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A model of a thin film elastically attached to a rigid substrate is considered. In the case in which the film
expands relative to the substrate and assuming certain nonlinear elastic behavior of the film, expansion ridges
may appear, in which the material collapses, and the density is higher on average. By studying numerically this
process, the possible morphologies of these collapsed regions are presented. They range from circular spots and
straight stripes, to wiggle polygonal patterns and ring-shaped domains. The similarity of some of these results
with patterns observed in delamination of thin films and biphase epitaxial growth is emphasized.

DOI: 10.1103/PhysRevE.74.036207 PACS number�s�: 89.75.Kd, 46.32.�x, 68.55.Jk

I. INTRODUCTION

When the surface of a material contracts with respect to
the underlying part, tensile stresses appear in it that can lead
to the formation of a crack pattern on the surface �1�. Mud
cracking can be considered the prototype of this kind of sur-
face fragmentation phenomenon. The main ingredients of
surface fragmentation are a �quasi� two-dimensional film at-
tached to a substrate �I always assume here the substrate is
rigid� and a greater expansion of the substrate compared to
the film as a function of some external control variable �typi-
cally humidity concentration or temperature�. The film and
substrate can be the same material, as in mud cracks, and in
that case it is only a difference in humidity concentration or
temperature what identifies film and substrate.

I will concentrate here in a process that in a certain sense
is the inverse of surface fragmentation: I consider the film
expanding with respect to the substrate. Due to the coupling
to the substrate, the greater expansion of the film generates
compressive stresses into it. No important effects are ex-
pected if the film responds linear elastically to any deforma-
tion. If this is the case the film is simply uniformly com-
pressed. But if the film can collapse upon compression, a
coexistence of collapsed and noncollapsed regions in the film
is expected. The presentation and discussion of the different
morphologies of these collapsed regions are the main aim of
this paper.

The two main features that fix the morphology of col-
lapsed regions are the degree of mismatch between film and
substrate, and the kind of nonlinear elastic behavior of the
film, in particular, the characteristics of the collapsed state.
Different possibilities are studied here. Most of the results to
be presented correspond to the case in which the system is
isotropic in the plane of the film �chosen to be the x-y plane�,
but some results for a model with square symmetry will also
be presented. In the next section, I present the model and
details of the simulation technique. In Sec. III the main re-
sults are presented, and in Sec. IV, I discuss two experimen-
tal situations in which the present model can be applied,
namely, delamination patterns of thin film and structures ap-
pearing during biphase epitaxial growth. Section V contains
a summary and conclusions.

II. THE MODEL

The model to be used is an extension of that used in Refs.
�2,3� to describe fracture �see also �4,5�, where essentially

the same technique was originally applied to study a case of
martensitic transformations�. It considers the film in a two-
dimensional approximation as described by the horizontal
displacement field u�r�, r��x ,y�. The fundamental variables
of the simulations are not the displacements themselves, but
the components of the strain tensor. This is defined as
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�xj
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�xi
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�uk

�xi

�uk

�xj
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The quadratic terms guarantee that finite rotations are not
present in the strain tensor �6�. In the formalism to be used,
the incorporation of these nonlinear terms presents some dif-
ficulties. Restricting to low values of the components of the
strain tensor, we can use its linear form �usually called the
infinitesimal, or Cauchy strain tensor�, namely

��i, j� �
1

2
� �ui

�xj
+

�uj

�xi
� . �2�

Typically, strains up to a few percents and rotations of up to
a few degrees can be accurately described using the linear
strain tensor, and I will assume this is the case in all results
presented below. For convenience, instead of �ij I will use
the following variables:

e1 � ��11 + �22�/2,

e2 � ��11 − �22�/2,

e3 � �12 = �21. �3�

These three variables are not independent. They satisfy the
St. Venant compatibility constraint �4,5,7�, which reads

��x
2 + �y

2�e1 − ��x
2 − �y

2�e2 − 2�x�ye3 = 0. �4�

The model will be defined by giving the form of the free
energy density of the system in terms of the variables e1, e2,
and e3. The free energy contains three terms: a local term f0,
a gradient term f�, and a substrate interaction term fsubs. The
existence of a collapse transition for the film is encoded in
the form of the local free energy term f0. If we intend to
describe a material that is isotropic in the x-y plane, only
rotationally invariant combinations of the basic variables ei
should enter the free energy. Those that can be constructed

PHYSICAL REVIEW E 74, 036207 �2006�

1539-3755/2006/74�3�/036207�8� ©2006 The American Physical Society036207-1

http://dx.doi.org/10.1103/PhysRevE.74.036207


from the ei’s are e1 itself, and ed�	e2
2+e3

2. A perfectly elastic
material is described by a local free energy having a qua-
dratic minimum, namely its local free energy is of the form

f0
elastic = B�e1 − e1

0�2 + ��e2
2 + e3

2� , �5�

where B and � are, respectively, proportional to the bulk and
shear modulus of the material. With the present choice, in a
completely relaxed state the system has e1=e1

0, e2=e3=0.
If the material can collapse, f0 must have nonquadratic

terms and have some other minimum at some e1
C, ed

C describ-
ing the collapsed state. For the description in terms of the
linear strain tensor to be accurate, we must require 
e1

C

−e1
0 
 �1 and ed

C�1. The position of the collapsed minimum
�in particular, the ratio ��ed

C / �e1
C−e1

0�� will have important
consequences on the morphologies of the collapsed regions
that will be observed. Different locations of the collapsed
minimum will be explored and discussed here. They are
qualitatively depicted in Fig. 1 as cases A, B, C, and D. It is
necessary to point out that the change in morphologies that
will be observed among different cases is rather smooth; the
distinction is made for classification purposes only. I have
observed in the numerical simulations that in most cases the
morphologies of the collapsed patterns depend only on the
position of the collapsed minimum with respect to the elastic
minimum, the detailed form of f0 being of minor importance.
Only in case A, there are noticeable variations depending on
the value of the shear modulus of the collapsed state �C with
respect to the value in the normal state �. Thus, in this case,
two subcases will be distinguished: A1, in which �C is
greater or equal to �, and A2, in which �C is lower than �.
Note that when the collapsed state has ed

C�0, it corresponds
actually to a ring of minima in the e1, e2, e3 space. In other
words, the collapse of a circular piece of material to a state
with ed�0 produces an ellipse, but this ellipse in the x-y
plane can be in any orientation. The crucial features of each
f0 used in the simulations, mainly the position of the free
energy minima, are indicated on each figure below. As other

details of the f0 part of the free energy are not crucial for the
results, the exact form of f0 in all the cases A–D is given in
the Appendix.

Gradient terms in the free energy will be taken in the form

f� = �
i=1,2,3

�i��ei�2, �6�

where �2=�3�� should be chosen to retain rotational
invariance. In all results below I take for simplicity also �1
=�. Some additional runs in cases with �1�� show that the
results are not crucially dependent on this choice.

The elastic interaction with the substrate is easily written
in terms of the displacement variables u:

fsubs =
�

2

u�r�
2, �7�

where � measures the stiffness of this interaction. As I take
the components of � to be the basic variables, this energy has
to be recast in terms of them. This is more easily done in the
Fourier space, and the result can be easily written after an
integration over the whole system as

� d2rfsubs = 2���
d2k


ẽ2�k�
2 + 
ẽ3�k�
2

k2 , �8�

where ẽi�k� are the Fourier transforms of the original
ei�r�, and the prime in the integral indicates that the k=0
mode is excluded. To avoid a divergent energy contribution,
the value of ẽ1�k=0�= ē1 �where the bar notes the spatial
average� has to be adjusted for the system to fit on average
onto the substrate, namely, the mismatch with the substrate is
incorporated in the model precisely through the value given
to ē1.

Nontrivial spatial patterns originate in the existence of
different minima of the free energy f0. The typical spatial
scale of these patterns is governed by a competition between
gradient and substrate terms. In fact, in Fourier space a spa-
tial oscillation of the e’s of wave vector �k and amplitude A
produces a contribution to the energy density of the order of
�A2k2 from the gradient terms, and �A2 /k2 from the
substrate term. The sum of these two contributions has a
minimum at a value of k of the order of �� /��1/4. This is the
order of magnitude of the main spatial variations that will be
seen to appear in the simulations.

The equations of motion are taken to be of the
overdamped form, namely

�ei

�t
= − �

	F

	ei
�i = 1,2,3� , �9�

where

F =� d2r�f0 + f� + fsubs� . �10�

The Saint Venant constraint is implemented by the use of
Lagrange multipliers. Full details can be seen in �2,5�.
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FIG. 1. Different possibilities for the location of the collapsed
minimum in the e1-ed plane. The elastic minimum is located at O.
The sketches show qualitative �in the plane of the system, namely,
the x-y plane� an originally circular piece of material at O and its
collapsed form for different locations of the collapsed minimum. In
cases A and B �i.e., below the dotted line� an original circular piece
of material contracts in all directions, whereas for C and D there is
a direction in which it actually expands. Note that the orientation of
the ellipses is arbitrary in the x-y plane; all orientations produce the
same ed, and thus the same energy.
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III. RESULTS

For each set of parameters and any given initial condition,
the system evolving according to Eq. �9� will settle down in
a configuration that minimizes �albeit locally� the total en-
ergy F. We will see that, in general, metastable states appear
very often in the simulations. In order to get as close as
possible to the true ground state configuration, an annealing
process was implemented in which a stochastic term was
added to the right-hand side of Eq. �9�, and the intensity of
this term was progressively reduced down to zero during the
simulation. The results shown are the final configuration of
the annealing process, and are good examples of the typical
morphologies favored by the competition of the different
energy terms.

Results will be presented for a unique set of values of the
coefficients � and � in the gradient and substrate interaction
terms �Eqs. �6� and �8��. It can be shown that a change of
these parameters can be absorbed in a rescaling of the spatial
coordinate and a global redefinition of the free energy �8�. I
have chosen the values �=3, �=0.01, for which the expected
spatial scale of the structures to be seen �based on the esti-
mation in the previous section� is of the order of ten mesh
parameters. Thus, the geometrical features of the patterns
will be reasonably larger than the discretization of the nu-
merical mesh, and this is appropriate to eliminate spurious
effects associated with this discreteness.

Before presenting the configurations, it is important to
clarify the meaning that will be given to the overall values of
the e’s. As already stated, neglecting the quadratic terms in
the full strain tensor means that the description will be accu-
rate if all e’s are small. I take the values of the e’s in the plots
and in the expression in the Appendix to be scaled values,
the true values will be supposed to be given by a constant
factor r times the scaled values. If r is taken progressively
smaller, the present description becomes progressively more
accurate. With this consideration in mind, we can now look
at the configurations obtained, as depicted in Figs. 2–6, cor-
responding to cases A–D, respectively. Each panel in each
figure represents a different value of ē1, i.e., a different de-
gree of mismatch with the substrate. Each main plot shows
the spatial distribution of e1 or ed �depending on which is
more representative in each case�. The scale for this plot is
indicated in the bar of the inset. The inset also shows the
combined distribution of ed vs e1 for all elements in the
system. I now discuss separately each case.

Case A in which the collapsed minimum is isotropic �i.e.,
it has ed

C=0� can be appropriately called a volume collapse
transition. In the absence of a substrate interaction, this case
has been extensively studied, for instance, in Refs. �9–11� in
the context of phase separation in alloys. In that case there is
a coarsening of the spatial structures obtained, that grow in
size as time evolves. In our case in which a substrate inter-
action is present, the spatial structures observed stabilize
with a well-defined typical spatial scale, given by the com-
petition between gradient and substrate terms of the free en-
ergy, as explained in the previous section: too small patterns
are discouraged by a large gradient energy, whereas too large
patterns pay too much substrate interaction energy.

When the collapsed phase has the same shear modulus
than the original phase �Fig. 2� the results can be compared,

FIG. 2. �Color online� Spatial configurations obtained for case
A1, for values of ē1 equal to −0.4, −0.2, −0.1, and 0 �from left to
right and from top to bottom�. The shadows indicate values of e1,
with the scale indicated in the inset. In the inset plots, the distribu-
tion of ed vs e1 is shown for all elements of the system. The posi-
tions of the minima of the local free energy are indicated by the two
circles in each inset. In the present case the shear modulus of the
intact and collapsed phases coincide, namely �=�C. See the full
expression for the local free energy in the Appendix.

FIG. 3. �Color online� Same as Fig. 2 but for case A2, and
values of ē1 of −0.4, −0.2, −0.1, and 0.2. In the present case
� /�C�100.
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for instance, to those in Ref. �10�, Figs. 2�a� and 2�b�. The
main difference is that those in Ref. �10� are patterns that are
coarsening, while ours are stable due to the substrate inter-
action, but they look qualitatively similar.

In the case in which the collapsed phase has a lower shear
modulus than the original phase �case A2, Fig. 3�, bubbles of
the softer phase tend to be unstable with respect to elonga-

tion �9,11�. This is clear, in particular, comparing the second
panels in Figs. 2 and 3. Note that the effect is not symmetric:
if the mismatch is such that the minority phase corresponds
to the more rigid phase, then the bubbles remain stable �com-
pare panels with ē1=−0.2 and ē1=0.2 in Fig. 3�. Patterns
similar to these can be seen in Ref. �10�, Fig. 2, �i� and �j�. In
both cases A1 and A2, for even larger mismatch �not shown�
all the system becomes uniformly collapsed, with e1�r�= ē1,
e2�r�=e3�r�=0. I will not analyze case A in more detail
since, as mentioned, it has been analyzed in detail in
qualitatively similar situations.

Cases in which the collapsed minimum has nonzero ed
C

have not been analyzed before, to my knowledge, and are the
main contribution of the present paper. Starting with case B
�Fig. 4� we observe a stronger tendency to form stripes and
polygonal patterns than in the previous cases. There is also
an important difference with case A for large mismatch
�lower-right panel�: Now each elemental piece of the system
prefers to be as close as possible to the collapsed minimum,
that locates at a nonzero value of ed. However, not all ele-
ments can have the same values of e2 and e3, since the spatial
averages ē2 and ē3 should be zero. The existence of the sub-
strate also discourages uniform phases with constant e2 or e3.
The configuration of the system is such that individual ele-
ments tend to be distributed close to the ring of minima in
the e2-e3 plane. In real space, singularities appear at which
e2=e3=0, and around them the configuration point in the e2-
e3 plane rotates 2
, clockwise, or counterclockwise, thus
defining “vortexlike” or “antivortexlike” defects. Typical dis-
tance between these defects is again controlled by �� /��1/4,
fixed by the competition between gradient and substrate
terms. In particular, the density of these defects tends to zero
for vanishing substrate interaction.

FIG. 4. �Color online� Same as Fig. 2 but for case B, and values
of ē1 of −0.2, 0, 0.4, and 0.5 �note that in this and next two figures,
the main plot shows values of ed, instead of e1�.

FIG. 5. �Color online� Same as Fig. 4 but for case C, and values
of ē1 of −0.05, 0.1, 0.3, and 0.4.

FIG. 6. �Color online� Same as Fig. 4 but for case D, and values
of ē1 of −0.005, 0.05, 0.2, and 0.4.
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Cases C and D �Figs. 5 and 6� present an interesting dif-
ference in morphology with respect to previous cases:
Stripes of collapsed regions have now a wavy structure. In
some cases, we observe even the existence of ring-shaped
collapsed regions. The origin of wiggling collapsed stripes
and rings is dictated by the tendency of the model to mini-
mize the energy. A closer look to the configurations clarifies
the way in which circular or wiggle patterns are able to re-
duce the total energy. I refer first of all to Fig. 7, where some
special parts of the patterns found in the simulations are
shown in more detail. In this figure I plot the actual position
of the nodes of the numerical mesh, namely the displacement
field u�r� �this is obtained from the e’s by numerical integra-
tion�. For comparison, the structure of a circular and striped
collapsed region in cases A and B, and a ring and a piece of
a wiggled striped in case D are shown. The structures in
cases A and B, show that the displacement field u is radial in
the case of a circular spot, or perpendicular to the axis in the
case of a stripe. Starting from these configurations, we can
understand how the energy is reduced in case C and D as
follows: First of all, note that cases C and D correspond to
situations in which the collapse of a circular piece of material
generates an ellipse with the major axis larger than the origi-
nal diameter of the circle, while it was smaller in cases A and
B �see Fig. 1�. In other words, these cases have ��1. Ana-

lyzing the configuration of a ring in Fig. 7�c�, we can see that
the center is rotated �the rotation sense is arbitrary� thus gen-
erating a finite shear in an annular region. This shear in-
creases ed, thus reducing the energy if the collapsed mini-
mum has a sufficiently large �. In addition, upon this
rotation, the central region is able to expand, getting closer to
the noncollapsed minimum, and reducing the energy further.
For the wiggle pattern, we can consider it as a deformation of
the straight stripe. The scheme of this process is depicted in
Fig. 8. First of all note that for the linear stripe and in the
case in which ��1, the collapsed stripe is longitudinally
compressed. The wiggling geometry is just a way of relaxing
this compression: once the stripe is undulated, regions near
the maxima of the undulation in Fig. 8 can expand in the
longitudinal
direction, thus relaxing to a more favorable configuration.

IV. PRACTICAL REALIZATIONS

I have analyzed the situation of a material that has two
well-defined elastic configurations of minimum energy. We
have seen that nontrivial morphologies may appear when a
quasi-two-dimensional piece of such a material is uniformly
attached to a rigid substrate. In searching for practical real-
izations, it will be difficult to find that all the assumptions in
the model are satisfied, however, it can be a good idealized
case to study some practical problems. Two examples will be
presented now.

The first case corresponds to the patterns observed in
delamination of thin films �12–14�. In this case, typically, a
film is grown onto a substrate, and due to chemical differ-
ences between substrate and film �which may be enhanced
by temperature changes� elastic stresses develop between
them. If the stresses are compressive within the film, they
may induce the buckling up of part of the film, giving rise to
patterns that have been termed “telephone-cord”-like, due to
their wavy appearance. In some cases, wavy polygonal pat-
terns of buckled regions are observed, remarkably similar to
those in Figs. 5 and 6 �see, in particular, Fig. 1�a� in Ref.
�13��.

The microscopic equations governing the delamination
process are the Foppl-Von Karman equations �14�. They
model the three-dimensional displacement of the points
of the buckled film. It seems unlikely that this set of nonlin-
ear equations can be simply mapped to the model presented
here. However, the similarity of the patterns observed in
the two cases does not seem to be fortuitous, and in fact, a
qualitative relation between the two models can be made.

A stripe of buckled material is qualitatively depicted in
Fig. 9�a�. On the stripe, the film has detached from the sub-
strate, and the compressive stress on the film has been par-
tially released due to the expansion of the film in the direc-
tion perpendicular to the stripe allowed by the buckling. This
configuration is the counterpart of a stripe of collapsed ma-
terial in the model I have presented here �Fig. 9�b��. In both
cases there are two qualitatively different configurations cor-
responding to two different minima of the energy: the at-
tached and unbuckled film, that parallels the isotropic mini-
mum of our model, and the detached and buckled film,

FIG. 7. Detailed structure of the lattice in particular sectors of
Figs. 2, 4, and 6. I plot the numerical �square� mesh shifted by the
corresponding displacement field u. For visualization reasons the
displacement field u has been appropriately increased by a constant
factor.
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which is represented by the collapsed minimum of the
model. The additional crucial analogy between the two cases
that justifies the similarity of the patterns is the following:
In the present model for sufficiently large �, I have already
indicated how the undulation of the collapsed region is
able to reduce the energy of the system. Exactly the same
analysis is valid for the buckling film. In fact, a stripe of
buckled film is longitudinally compressed, and the undula-
tion of the stripe is able to release part of this elastic energy.
This qualitative explanation of undulations of buckled stripes
was noticed in the literature �14�. This analysis allows us to
understand why the two problems present notably similar
morphologies of patterns. I want to point out that the other
characteristic morphology that appears in the collapse model,
namely the ring-shaped collapsed region, has also been oc-
casionally observed in delamination, see Ref. �13�, Fig. 2�a�.
All these similarities might point to a deeper correspondence
between the two models. How this correspondence would
come out is not clear to me at the moment, but is worthy of
further investigation.

A second problem to which the present model can be
applied is the epitaxial growth of competing phases with
different crystallographic parameters �15�. In this problem,
two �or more� chemically different phases compete to grow
epitaxially onto a substrate. If the growing is coherent
�namely, if no dislocations appear in the crystalline struc-
ture�, elastic stresses are accumulated during growth, and
which phase is preferred locally to grow the material is dic-
tated by the tendency to minimize the total elastic energy of
the system. Then typically spatial patterns formed by the
coexistence of the different phases are observed. This situa-
tion can be appropriately modeled with the present formal-
ism just thinking on the two minima of the free energy of the
model as describing the two different growing phases, rather
than describing two different states of a single phase. To
reasonably describe this situation, one of the previously used
assumptions needs to be changed: Epitaxy is strongly depen-
dent on the crystalline structures of the phases, and isotropy
of the model in the x-y plane is not justified. However, the
model can be easily modified to account for anisotropies in

(c)

(b)

(a)

FIG. 8. Schematic displacement field u�r� for a stripe of col-
lapsed region �a�, the same stripe undulated through a sinusoidal
perturbation �b�, and the relaxation of the longitudinal stress that
allows the system to reduce the energy and stabilize the wiggling
pattern �c�.

delaminated region
collapsed region

x

y

y

x

(a) (b)

FIG. 9. A stripe of delaminated thin film �a�, and the qualitative
equivalent as a region of collapsed material in our model �b�.
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the x-y plane. I will present here only an example of the
possible outcome obtained using an anisotropic free energy.
Let us consider that the substrate has a square symmetry
�assumed to be aligned with the x-y coordinate axis�, that one
of the growing phases has also a square symmetry with a
larger unit cell than the substrate, and that the second grow-
ing phase has a rectangular symmetry with a lower unit cell
volume than that of the substrate. This situation corresponds
to a local free energy f0 having an elastic minimum as usual,
and a collapsed minimum localized now at e2= ±e2

C, e3=0. In
this way the ring of minima in the e2-e3 plane of the previous
cases is replaced by a couple of minima. The exact form of
f0 I use is given in the Appendix. The morphologies obtained
are shown in Fig. 10. As expected, the existence of a rectan-
gular phase reflects clearly on the morphology of the pat-
terns. Note how upon change of the fraction of the rectangu-
lar phase �which is dictated, as usual, by the degree of

mismatch with the substrate�, the morphology changes from
stripes of rectangular phase parallel to the axis �for low den-
sity of rectangular phase�, to stripes of rectangular phase
along the diagonals �for the case of a large fraction of the
rectangular phase� �16�.

V. SUMMARY AND CONCLUSIONS

Expansion ridges are analog to surface cracks, with the
difference that they appear when a film expands with respect
to the substrate �contrary to cracks, that appear when the film
contracts with respect to the underlying material�. A nonlin-
ear elastic behavior of the film, namely the possibility of a
collapse upon applied stress, is necessary for expansion
ridges to appear. I have simulated expansion ridges through
an elastic model that uses the components of the strain tensor
as fundamental variables. I have shown how complex mor-
phologies can appear due to competitive elastic interactions
in the system. By changing the parameters of the model,
collapsed regions in the form of bubbles, straight stripes,
undulating stripes, and rings have been obtained. I have ar-
gued that the model can be applied to understand the char-
acteristics of delamination patterns in thin films, and biphase
epitaxial growth. I have concentrated in the description of
the morphologies, and then the presentation has been quali-
tative to a large extent. A few important things can be high-
lighted: The relevant spatial scale of the patterns is seen to be
fixed by a competition between an interaction with the sub-
strate and gradient effects. In the case in which the collapse
is isotropic, well-known results in the field of alloy decom-
position have been reproduced. Wiggle stripes of collapsed
material appear when the collapse of an elemental circular
piece of material is such that contraction in one direction is
accompanied by expansion in the perpendicular direction. A
comparison has been made between these wiggling patterns
and those observed in delamination of thin films. I have also
provided an example showing that anisotropy can be easily
incorporated in the model, and showed that the anisotropic
case may have relevance for the study of biphase epitaxial
growth. More detailed studies an comparisons on each of
these individual realizations are in progress.

APPENDIX

I give here the explicit expressions for the local free en-
ergy f0 used in each of the simulations presented in the pa-
per. For Figs. 2 and 3, I use

f0 = 
 ed
2

2
+ �e1 − 1�2��1 + tanh�3e1�� + 
C1

ed
2

2
+ �e1 + 1�2�

��1 − tanh�3e1�� �A1�

with C1=1 in Fig. 2, and C1=0 in Fig. 3. In Figs. 4–6, I
use

f0 = 
 ed
2

2
+

ed
4

4
+ �e1 − C3�2��1 + tanh�C2e1�� + 
−

ed
2

2
+

ed
4

4

+ �e1 + C3�2 +
1

4
��1 − tanh�C2e1�� �A2�

FIG. 10. �Color online� Morphologies for an anisotropic case in
which the collapsed minima are located at e2= ±e2

C, e3=0. The val-
ues of ē1 for the plots are −0.1, 0, 0.1, 0.3, 0.4, and 0.5, respec-
tively. Note that as long as there is some fraction of the system in
the isotropic elastic minimum �first three plots� the morphology of
the collapsed regions is that of intercrossed stripes along x and y,
while when the fraction of the system in the elastic configuration is
negligible �last two plots� the morphology changes to stripes along
the diagonals.
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with C2=2 and C3=0.4 in Fig. 4; C2=3.5 and C3=0.2 in Fig.
5; and C2=4 and C3=0.1 in Fig. 6. Finally, in Fig. 10 I use

f0 = 
 e2
2

2
+

e2
4

4
+ �e1 − C3�2��1 + tanh�C2e1��

+ 
−
e2

2

2
+

e2
4

4
+ �e1 + C3�2 +

1

4
��1 − tanh�C2e1�� + e3

2

�A3�

with C2=2 and C3=0.4.
The equilibrium phases of the system correspond to the

minima of these expressions. For instance, in the case of
Figs. 2 and 3 the minima are located at e1�−1.022,
e2=e3=0 �the “normal state”� and e1�1.022, e2=e3=0 �the
“collapsed state”�. The elastic parameters of the different
states �such as bulk and shear modulus� can be evaluated
calculating the appropriate curvature of the free energy f0 at
the corresponding minimum.
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